Deep Learning Meets Cognitive Radio

Learning the channel occupancy patterns to reuse the underutilised spectrum frequencies without interfering with the incumbent is a promising approach to overcome the spectrum limitations. In this work we proposed a Deep Learning (DL) approach to learn the channel occupancy model and predict its availability in the next time slots. Our results show that the proposed DL approach outperforms existing works by 5%. We also show that our proposed DL approach predicts the availability of channels accurately for more than one time slot.