Ultra-Reliable Low-Latency Vehicular Networks

While the notion of age of information (AoI) has recently emerged as an important concept for analyzing ultra-reliable low-latency communications (URLLC), the majority of the existing works have focused on the average AoI measure. However, an average AoI based design falls short in properly characterizing the performance of URLLC systems as it cannot account for extreme events that occur with very low probabilities. In contrast, in this paper, the main objective is to go beyond the traditional notion of average AoI by characterizing and optimizing a URLLC system while capturing the AoI tail distribution. In particular, the problem of vehicles’ power minimization while ensuring stringent latency and reliability constraints in terms of probabilistic AoI is studied. To this end, a novel and efficient mapping between both AoI and queue length distributions is proposed. Subsequently, extreme value theory (EVT) and Lyapunov optimization techniques are adopted to formulate and solve the problem. Simulation results shows a nearly two-fold improvement in terms of shortening the tail of the AoI distribution compared to a baseline whose design is based on the maximum queue length among vehicles, when the number of vehicular user equipment (VUE) pairs is 80. The results also show that this performance gain increases significantly as the number of VUE pairs increases.