Factory Automation

Ultra-reliable and low-latency communications (URLLC) play a vital role in factory automation. To share the situational awareness data collected from the infrastructure as raw or processed data, the system should guarantee the URLLC capability since this is a safety-critical application. In this work, the resource allocation problem for an infrastructure-based communication architecture (Elevated LiDAR system/ELiD) has been considered which can support the autonomous driving in a factory floor. The decoder error probability and the number of channel uses parameterize the reliability and the latency in the considered optimization problems. A maximum decoder error probability minimization problem and a total energy minimization problem have been considered in this work to analytically evaluate the performance of the ELiD system under different vehicle densities.