Weighted secrecy coverage analysis and the impact of friendly jamming over UAV-Enabled Networks

In 5G and beyond networks, Unmanned Aerial Vehicles (UAV) are an attractive solution to enhance the secrecy of a wireless systems by exploiting their predominant LOS links and spacial manoeuvrability to introduce a friendly jamming. In this work, we investigate the impact of two cooperative UAV-based jammers on the secrecy performance of a ground wireless wiretap channel by considering secrecy-area related metrics, the jamming coverage and jamming efficiency. Moreover, we propose a hybrid metric, the so-called Weighted Secrecy Coverage (WSC) that can be used as a metric for gaining insights on the optimal deployments of the UAV jammers to provide the best exploration of jamming signals. For evaluating these metrics, we derive a closed-form position-based metric, the secrecy improvement, and propose an analogous computationally simpler metric. Our simulations show that a balanced power allocation between the two UAVs leads to the best performances, as well as a symmetrical positioning behind the line of sight between the legitimate transmitter and receiver. Moreover, there exist an optimal UAV height for the jammers. Finally, we propose a suboptimal and simpler problem for the maximisation of the WSC.