On Minimizing Energy Consumption for D2D Clustered Caching Networks

We formulate and solve the energy minimization problem for a clustered device-to-device (D2D) network with cache-enabled mobile devices. Devices are distributed according to a Poisson cluster process (PCP) and are assumed to have a surplus memory which is exploited to proactively cache files from a library. Devices can retrieve the requested files from their caches, from neighboring devices in their proximity (cluster), or from the base station as a last resort. We minimize the energy consumption of the proposed network under a random probabilistic caching scheme, where files are independently cached according to a specific probability distribution. A closed form expression for the D2D coverage probability is obtained. The energy consumption problem is then formulated as a function of the caching distribution, and the optimal probabilistic caching distribution is obtained. Results reveal that the proposed caching distribution reduces energy consumption up to 33% as compared to caching popular files scheme.