LSTM-based Service Migration for Pervasive Cloud Computing

Service migration in pervasive cloud computing is important for leveraging cloud resources to execute mobile applications effectively and efficiently. This paper proposes a LSTM (long and short-term memory model) based service migration approach for pervasive cloud computing, i.e., LSTM4PCC, which supports an accurate prediction of cloud resources. LSTM4PCC makes a prediction for cloud resource availability with a LSTM network and establishes a service migration mechanism in order to optimize service executions. We evaluate LSTM4PCC and compare it with the ARIMA (AutoRegressive Integrated Moving Average) approach in terms of prediction accuracy. The results show that LSTM4PCC performs better than ARIMA.