Low-Complexity Large MIMO Detection via Layered Belief Propagation in Beam Domain

In large multi-user multi-input multi-output systems the computational cost and circuit scale of base stations (BSs) are effectively reduced using two-stage signal processing consisting of a slow varying outer beamformer (OBF) based on long-term channel statistics and group-specific multi-user detection for instantaneous channel variations. However the dimensionality reduction of the group-specific beam-domain channel based on the OBF causes significant performance degradation in the subsequent spatial-filtering detection. To compensate for this drawback this paper introduces a novel layered belief propagation (BP) detector with a concatenated structure of beam- and antenna-domain BP layers for post-stage OBF processing. The proposed detector is designed for improving the convergence of iterative detection by suppressing intra- and inter-group interference in stages. The layered structure provides the advantages of both beam and antenna domains while maintaining low signal-processing complexity. Numerical results show the validity of our proposed method in terms of the bit error rate performance in both the uncoded and coded cases and the computational complexity.