Intelligible Protocol Learning for Resource Allocation in 6G O-RAN Slicing
An adaptive standardized protocol is essential for addressing inter-slice resource contention and conflict in network slicing. Traditional protocol standardization is a cumbersome task that yields hardcoded predefined protocols, resulting in increased costs and delayed rollout. Going beyond these limitations, this article proposes a novel multi-agent deep reinforcement learning (MADRL) communication framework called standalone explainable protocol (STEP) for future sixth-generation (6G) open radio access network (O-RAN) slicing. As new conditions arise and affect network operation, resource orchestration agents adapt their communication messages to promote the emergence of a protocol on-the-fly, which enables the mitigation of conflict and resource contention between network slices. STEP weaves together the notion of information bottleneck (IB) theory with deep Q-network (DQN) learning concepts. By incorporating a stochastic bottleneck layer – inspired by variational autoencoders (VAEs) – STEP imposes an information-theoretic constraint for emergent inter-agent communication. This ensures that agents exchange concise and meaningful information, preventing resource waste and enhancing the overall system performance. The learned protocols enhance interpretability, laying a robust foundation for standardizing next-generation 6G networks. By considering an O-RAN compliant network slicing resource allocation problem, a conflict resolution protocol is developed. In particular, the results demonstrate that, on average, STEP reduces inter-slice conflicts by up to 6.06× compared to a predefined protocol method. Furthermore, in comparison with an MADRL baseline, STEP achieves 1.4× and 3.5× lower resource underutilization and latency, respectively.